Name

TIONS TONS

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

PHYSICS 9702/06

Paper 6

May/June 2004

45 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all of the questions in any two options.

The number of marks is given in brackets [] at the end of each question or part question. You may lose marks if you do not show your working or if you do not use appropriate units.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use			
Α			
F			
М			
Р			
Т			
Total			

speed	of liaht	in free	space,
opood .	og		opaco,

permeability of free space,

permittivity of free space,

elementary charge,

the Planck constant,

unified atomic mass constant,

rest mass of electron,

rest mass of proton,

molar gas constant,

the Avogadro constant,

the Boltzmann constant,

gravitational constant,

acceleration of free fall,

$$c = 3.00 \times 10^8 \,\mathrm{m\,s^{-1}}$$

$$\mu_0 = 4\pi \times 10^{-7}~{\rm H}\,{\rm m}^{-1}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F \, m^{-1}}$$

$$e = 1.60 \times 10^{-19} \text{ C}$$

$$h = 6.63 \times 10^{-34} \,\mathrm{Js}$$

$$u = 1.66 \times 10^{-27} \text{ kg}$$

$$m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$$

$$m_{\rm p} = 1.67 \times 10^{-27} \text{ kg}$$

$$R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$$

$$N_{\Delta} = 6.02 \times 10^{23} \, \text{mol}^{-1}$$

$$k = 1.38 \times 10^{-23} \,\mathrm{J\,K^{-1}}$$

$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

$$g = 9.81 \text{ m s}^{-2}$$

www.PanaCambridge.com

Formulae

uniformly accelerated motion,

$$s = ut + \frac{1}{2}at^2$$
$$v^2 = u^2 + 2as$$

work done on/by a gas,

$$W = p\Delta V$$

gravitational potential,

$$\phi = -\frac{Gm}{r}$$

simple harmonic motion,

$$a = -\omega^2 x$$

velocity of particle in s.h.m.,

$$v = v_0 \cos \omega t$$

$$v = \pm \omega \sqrt{(x_0^2 - x^2)}$$

resistors in series,

$$R = R_1 + R_2 + \dots$$

resistors in parallel,

$$1/R = 1/R_1 + 1/R_2 + \dots$$

electric potential,

$$V = \frac{Q}{4\pi\epsilon_0 r}$$

capacitors in series,

$$1/C = 1/C_1 + 1/C_2 + \dots$$

capacitors in parallel,

$$C = C_1 + C_2 + \dots$$

energy of charged capacitor,

$$W = \frac{1}{2}QV$$

alternating current/voltage,

$$x = x_0 \sin \omega t$$

hydrostatic pressure,

$$p = \rho gh$$

pressure of an ideal gas,

$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

radioactive decay,

$$x = x_0 \exp(-\lambda t)$$

decay constant,

$$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$$

critical density of matter in the Universe,

$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

equation of continuity,

$$Av = constant$$

Bernoulli equation (simplified),

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$

Stokes' law,

$$F = Ar\eta v$$

Reynolds' number,

$$R_{\rm e} = \frac{\rho v r}{\eta}$$

drag force in turbulent flow

$$F - Rr^2 \alpha v^2$$

For Examiner's Use

Answer **all** of the questions in any **two** of the Options.

Answer the questions in the spaces provided on the Question Paper.

The Options are as follows.

1

Option A	Astrophysics and Cosmology	questions 1, 2, 3 and 4
Option F	The Physics of Fluids	questions 5, 6 and 7
Option M	Medical Physics	questions 8, 9 and 10
Option P	Environmental Physics	questions 11, 12 and 13
Option T	Telecommunications	guestions 14, 15 and 16

Option A

Astrophysics and Cosmology

(a)	State Olbers' paradox.
	[3]
(b)	Suggest how Olbers' paradox is resolved by a model based on an expanding Universe.
	[2]

For Examiner's

- 2 The star Altair is 16 light-years from the Sun.
 - (a) Calculate the distance between Altair and the Sun in parsecs (pc).

distance	_	20	េា	ı
JISIAHU U	=	 рс	[4]	

(b) Fig. 2.1 shows the position of Altair relative to Earth at two positions of Earth, separated in time by 0.5 years.

Fig. 2.1

The angle α is equal to the parallax angle of Altair. Determine the angle α .

$$\alpha$$
 = arc sec [2]

(a) State the Cosmological Principle.
[2]
(b) Describe the nature of cosmic microwave background radiation and suggest how this supports the Cosmological Principle.

- Planets have been discovered orbiting stars other than the Sun. 4
 - (a) Suggest and explain two reasons why direct observation of such planets is n possible.

	The state of the s	
	7	For Examiner's
Plar	nets have been discovered orbiting stars other than the Sun.	Use
(a)	nets have been discovered orbiting stars other than the Sun. Suggest and explain two reasons why direct observation of such planets is not possible.	Midde
	1	COM
	2	
	[4]	
(b)	Suggest and explain how their existence can be inferred.	

Option F

The Physics of Fluids

(a) Expanded polystyrene has a density of 15 kg m^{-3} . 5

www.PapaCambridge.com Calculate the volume of expanded polystyrene required as a buoyancy aid so that it provides a resultant upward force of 25 N when totally submerged in water of density $1.0 \times 10^3 \,\mathrm{kg}\,\mathrm{m}^{-3}$.

volume = m³ l	13
---------------	----

(b) A rowing boat has a cross-section as illustrated in Fig. 5.1.

Fig. 5.1

In order to improve its buoyancy in the event that it turns over, expanded polystyrene blocks are to be fitted inside the boat.

Suggest, with a reason, whether the blocks should be fixed at position A at the two positions marked B.	on the keel or
	[2]

Fig. 6.1 represents one type of car.

6

Fig. 6.1

a)	exerts on the road can become less.
	[4]

(b) The effect in (a) can lead to a loss of control of the car at high speeds. To prevent this, a 'spoiler' may be fitted to the back of the car, as illustrated in Fig. 6.2.

Fig. 6.2

ggest why the spoiler reduces this problem.
[2]
L J

www.PapaCambridge.com The drag force F on a spherical particle of radius r moving with streamline flow at 7 through a fluid of viscosity η is given by the expression

 $F = 6\pi r \eta v$.

(a) Complete Fig. 7.1 to show streamline flow of a fluid around a sphere.

Fig. 7.1

(b) Spherical particles of radius $4.5\times10^{-7}\,\mathrm{m}$ and density $3.9\times10^3\,\mathrm{kg\,m^{-3}}$ are initially distributed uniformly throughout some water of density $1.0\times10^3\,\mathrm{kg\,m^{-3}}$ and viscosity $9.5 \times 10^{-4} \text{ Pa s.}$

The water is 8.0 mm deep. Assume that there are no currents in the water.

Calculate the terminal speed at which a particle falls through the water.

speed = $m s^{-1}$ [4]

www.PapaCambridge.com (ii) After some time, the water near the surface becomes clear as the particles as illustrated in Fig. 7.2.

Fig. 7.2

Calculate the approximate fraction of the particles that remain suspended in the water after a time of 1.0 hour.

fraction	_	เวา
Haction	_	 ıvı

Option M

Medical Physics

	*www.		
	12	For Examiner's	
	Option M	Use	
	Medical Physics	Shir.	
(a)	Briefly explain the principles of the generation of ultrasound.	Te.com	
	(a)	Option M Medical Physics (a) Briefly explain the principles of the generation of ultrasound.	Option M Medical Physics

(b) An ultrasound pulse is transmitted into the body of a patient. The pulse is partially reflected at a fat/muscle boundary and then at a muscle/bone boundary. The reflected pulses are received back at the transmitter and are displayed, after processing, on the screen of a cathode-ray oscilloscope (c.r.o.). The trace is shown in Fig. 8.1.

Fig. 8.1

The time-base of the c.r.o. is $10 \,\mu s \,cm^{-1}$.

								-		1/2			
					13					MAN. P. O.	N.	For Examiner's	
Use	Fig. 8.1 to dete	ermine									C:	Use	
(i)	the thickness $1450\mathrm{ms^{-1}},$	of the	layer	of fat	given	that	the	speed	of	ultrasound in fa	at 10	ridge.com	1
													100

thickness = cm [3]

(ii) the muscle thickness given that the speed of ultrasound in muscle is $1590 \, \text{m s}^{-1}$.

thickness = cm [2]

The	human eye is able to accommodate. Explain what is meant by accommodate.
	human eye is able to accommodate. Explain what is meant by accommodate.
	[2]
The	range of distinct vision of an elderly person is 1.2 m to 4.0 m.
(i)	State the range of distinct vision for a person with normal vision. [1]
(ii)	In order to correct the elderly person's vision, two pairs of spectacles are required.
	Calculate the power of the lenses in each pair of spectacles.
	power of lenses = D and
(iii)	Suggest how the inconvenience of changing spectacles for distant vision and then close-up vision may be overcome.
(,	
(,	
()	
()	
(,	
(,	
()	

10 Fig. 10.1 shows the variation with frequency *f* of the threshold intensity level *I.L.* of a with defective hearing.

Fig. 10.1

Describe and explain triese delects.	
	[3

Option P

Environmental Physics

	Option	P
	Environmental	Physics
) (i		P Physics tant.
		[2]
(ii		9×10^{26} W. The radius of the Earth's orbit
	solar constant	= W m ⁻² [2]
F	g.11.1 illustrates sunlight incident on the E	arth.
	So Cas	——————————————————————————————————————
	N N	sunlight
	Fig. 11.1	
	-	

12 In many countries, there are daily and seasonal variations in demand for electrical po

www.PapaCambridge.com (a) Explain why there are variations in demand. (b) Explain the advantage of having some form of pumped water storage scheme for the generation of electrical energy.

13 A certain engine operates on the cycle illustrated in Fig. 13.1.

Fig. 13.1

A mass of gas is firstly compressed adiabatically (O \rightarrow A) such that 400 J of work is done on the gas. During the stage $A \rightarrow B$, fuel is injected into the gas and this causes heating at constant pressure as the fuel burns. The gas and burned fuel then expand adiabatically $(B \rightarrow C)$ and, during this process, 1020 J of work is done by the gas and burned fuel. Finally, during the stage $C \rightarrow O$, energy is wasted.

During the stage $A \rightarrow B$, 2500 J of energy is supplied to the gas. Show that the (a) (i) work done by the gas as it expands during this stage is 605 J.

(ii) Calculate the energy wasted during the stage $C \rightarrow O$.

energy = J

For Examiner's Use

(iii) Determine the efficiency E of the engine, given that

 $E = \frac{\text{useful work done during the expansion from A to C}}{\text{total energy input}}.$

	$E = \dots$
	[5
(b)	State one similarity and one difference between the operating cycle of this engine and that of a four-stroke petrol engine.
	similarity:
	difference:
	[2

Option T

Telecommunications

		Why was a second of the second
		20
		Option T
		Telecommunications
		Option T Telecommunications ain telephone system, the actual signal power in a wire is expressed as the number els (dB) above or below a reference power level of 1.0 mW.
(a)	Stat	te a formula for the ratio of two powers P_1 and P_2 , expressed in decibels (dB).
(b)		gnal in a wire has a power of 25.4 mW. Express this signal power as a number of dB ve or below the reference level.
		number of dB =
		the reference level [2]
(c)	The	wire has an attenuation per unit length of 3.2 dB km ⁻¹ .
	(i)	Explain what is meant by attenuation.
	(ii)	Calculate the length of the wire for the signal in (b) to be reduced to the reference level.
		length = km

5 (a) Explain what is meant by amplitude modulation.

(b) The variation with frequency *f* of the power *P* of an amplitude-modulated signal from a radio station is shown in Fig. 15.1.

Fig. 15.1

Use Fig. 15.1 to determine

(i) the wavelength at which the radio station is broadcasting,

wavelength = \dots m

(ii) the bandwidth of the radio signal,

bandwidth = kHz

(iii) the maximum frequency of the demodulated signal.

frequency = kHz

		the state of the s
		cribe the orbit of a geostationary satellite.
(a)	Des	scribe the orbit of a geostationary satellite.
	••••	
		[3
(b)	(i)	State a typical frequency for communication between the Earth's surface and a geostationary satellite.
		frequency = Hz
	(ii)	Suggest why the frequency of transmission from the satellite is different from tha received by the satellite from Earth.
		[2
(c)		e one advantage and one disadvantage of the use of geostationary satellites wher npared with polar-orbiting satellites for telephone communication.
	adv	antage:
	disa	advantage:
		[2

23

BLANK PAGE

www.PapaCambridge.com

24

BLANK PAGE

www.PapaCambridge.com

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.